All posts in DadDIY

Star Box

My toddler loves looking at stars projected on her ceiling before bedtime.

I had ideas for a homemade planetarium using laser-cut shapes and programmed full-color LEDs. But then I thought I’d just drill holes in a metal box and use my phone’s flashlight. It took 10 minutes and works great.

starboxopen

starbox

starboxceiling

Highchair Blinky

Here’s my third baby/toddler blinky toy, and first official entry to the canon of IKEA hacks… the blinking high chair, aka the Antiloputer.

This is four arcade buttons and four smart full-color LEDs, drilled into an IKEA Antilop high chair (a spare tray is $5). The brain is a 5v Adafruit Pro Trinket, powered by four AA batteries.

The default mode is the same as the blinky my dad made for me long ago: press the red button and the red light lights up, press the green button and the green light lights up, and so on.

Holding down all the buttons at once lets you switch modes: mode two is like mode one, except each light stays on until the next one is pressed. Mode three is like a typewriter, and mode four is a step sequencer.

This was my first time programming with the FastLED library to control the LEDs. Download the code here.

highchair

I suspect the high chair wouldn’t make it through airport security — below is what it looks like inside… Normally, baby legs are protected from the electronics (and vice versa) by a piece of heavy cardboard.

highchair-inside

The buttons are attached between the regulated 5v power rail on one side, and pins 10-13 on the other, with a 10k ohm resistor running to ground from each. The LED data is on pin 9, and power for the LEDs also comes from the 5v power rail, through the Trinket. I did this since the 6v coming directly from the batteries is too much for the NeoPixels.

The Trinket can only provide 150 mA, which is pushing what four LEDs will draw at max brightness. Fortunately, the FastLED library has a line where you can specify the max current, and it will dim the LEDs as needed. Genius.

highchair-board

The LEDs are below the high chair tray, aimed up through small holes. I hot glued translucent plastic containers from an art store over the holes, which glow nicely. Be warned, babies are stronger than hot glue, although there’s no danger if the containers get ripped off. You could probably skip the holes and containers, since the LEDs are bright enough to show through the tray.

Also check out the BABYTRON for more blinking.

Switches!

My grandfather built a panel of light switches from WWII surplus for my dad as a toddler, and my dad built a panel of buttons connected to indicator lights for me. So now, I’ve built the Model C, a set of light switches for my daughter. It’s easier than holding her up to play with the house lights.

switches

These switches are connected to white LEDs, powered by two C batteries. The switches are hot glued to holes drilled in a board, covered with plastic containers from an art store.

I used the LED wizard to figure out what resistor to use. Burnt out LEDs stink, literally.

Next up, the Model D, using programmable LEDs in a high chair.

[UPDATE] The lights are in holes beneath translucent plastic containers. I put some cheap plastic Easter eggs inside, and voila! Now in color!

switches-color

Toddler’s Cardboard Computer

My one-year old daughter looooooves buttons, and always wants in on the action when someone’s using a computer… so I transformed her new car seat box into the BABYTRON, inspired by the Burroughs B205.

It features a keyboard, arcade buttons, and a strip of LEDs from Blinkinlabs.

The LEDs have a built-in controller, so no wiring was required beyond USB power. In fact, the whole computer was assembled only using glue, tape, scissors, and string. The buttons don’t control anything — but they do make a satisfying “click” when pressed.

There are several ways to talk to the Blinkinlabs LEDs. I’m familiar with Adafruit’s NeoPixel library, so I told the Arduino IDE that it was a Leonardo, assigned data to pin 13, and uploaded my sketch. Code here.

I kept the brightness of each LED below 20 out of 255, because they’ll hurt your eyes if fully on. It’s also running off a portable USB battery pack, so I wanted to keep the power draw fairly low.

I did consider adding a tape drive, using a paper plate behind a round plastic cover from a food delivery container, powered by a LittleBits motor. Next time.

It turns out that this is ideal for someone who’s able to stand up while holding onto something, but can’t walk on their own. My daughter’s younger friends love it. But she’s now savvy to the buttons not doing anything, and is most interested in the power button — the one that mom and dad push. Time to build something else and recycle the BABYTRON.